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Abstract-- G-protein coupled receptors (GPCRs) are the largest family of cell surface receptors that via 

trimetric guanine nucleotide-binding proteins (G-proteins), initiate some signaling pathways in the Eukaryotic 

cell. Many diseases involve malfunction of GPCRs making their role evident in drug discovery. Thus, the 

automatic prediction of GPCRs can be very helpful in pharmaceutical industry. However, prediction of 

GPCRs, their families and sub families is a challenging task. In this paper, GPCRs are classified into families, 

sub families, and sub-sub families using pseudo amino acid composition and multi-scale energy 

representation of different physiochemical properties of amino acids. Aim of present research is to assess 

different feature extraction strategies and to develop a hybrid feature-extraction strategy that can exploit the 

discrimination capability in spatial as well as transform domain for GPCR classification. Support vector 

machine (SVM), nearest neighbor (NN) and probabilistic neural network (PNN) are used for classification 

purpose. The overall performance of each classifier is computed individually for each feature extraction 

strategy. It has been observed that using Jackknife test; the proposed GPCR-Hybrid provides best results, 

reported so far. The GPCR-Hybrid web predictor to help researchers working on GPCRs in the field of 

Biochemistry and Bioinformatics is available at http://111.68.99.218/GPCR.  

Keywords: GPCRs classification, Multi-scale energy, Pseudo amino acid composition, physiochemical properties 

and Rhodopsin-like receptors. 
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1. INTRODUCTION 

G-protein coupled receptors (GPCRs) are known to play an essential role in the coordination of cellular 

communications and are involved in many physiological processes. They play important role in various mammalian 

disorders including allergies, cardiovascular dysfunction, depression, cancer, pain, diabetes, and various central 

nervous system disorders. They consist of seven transmembrane alpha helices, an intracellular C-terminal, an 

extracellular N-terminal, three intracellular loops and three extracellular loops. They can activate signaling pathways 

that control gene expression and cell proliferation, serving as crucial mediators for various cellular signal 

transduction events that provide the means for cells, tissues, organs and organisms to react properly to the changing 

environment [1]. They are also widely expressed in the central nervous system, where they mediate and modulate 

synaptic transmission in the brain and spinal cord. GPCRs play an important role in drug discovery. The location of 

GPCRs on a cell makes them readily accessible to drugs. More than 50% of the current drug targets are focused on 

GPCRs [1, 2]. At least 55 types of GPCRs are known for directly mediating neuronal and endocrine regulation of 

cardiac and vascular responses. Additionally, many GPCRs are known to influence cardiovascular functions. Their 

role in the development of cancer is becoming apparent that is why, GPCRs are the emerging targets for therapeutic 

interventions to treat cancer.   

GPCRs consist of different amino acid sequences and based on the sequence homology these are divided into six 

families [3] such as: Rhodopsin-like receptors (Class A), Secretin receptors (Class B), Metabotropic glutamate 

receptors (Class C), Fungal mating Pheromone receptors (Class D), Cyclic AMP receptors (Class E) and 

Frizzled/Smoothened receptors (Class F). The GPCR classes A, B, C and F are mostly found in mammals, class D is 

found only in Fungi and class E GPCRs are found in Dictyostelium. Rhodopsin-like receptors is the biggest family 

of GPCRs constituting 80% of all GPCRs. It is used to bind peptides, biogenic amines or lipid-like substances [4]. 

The Secretin receptors bind large peptides such as Secretin, parathyroid hormone, glucagon, vasoactive intestinal 

peptide growth hormone releasing hormone and pituitary adenylyl cyclase activating protein [5]. The Metabotropic 

glutamate receptors are activated through an indirect metabotropic process [6]. Fungal mating Pheromone receptors 

are used for chemical communication in various organisms [7]. Similarly, the Cyclic AMP receptors form a part of 

the chemotactic signaling system of slime molds [8]. On the other hand, Frizzled/Smoothened receptors are 

necessary for Wnt binding and the mediation of hedgehog signaling, a key regulator of animal development [9]. 
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Each family is divided into sub-families, and similarly each sub family is further divided into sub-sub families. The 

classification of GPCRs into families, sub-families and sub-sub families is done based on the functionalities 

performed by each GPCR sequence; grouping GPCR sequences with similar functionalities in the same family. One 

amongst several methods for the prediction of GPCR sequences is to do sequence similarity searches using pair wise 

alignment tools [10] e.g. BLAST and FASTA (Altschul et al., 1997; Pearson, 2000). The second method is to classify 

GPCRs by conducting biological experiments. During the last decade, hundreds of new GPCRs have been 

discovered and it is continuing to grow rapidly. Therefore, their annotation based on the manual experimentation has 

made it very expensive and almost impossible. Thus, there was a great need of fast, reliable and efficient systems 

that can exploit different properties of GPCRs to annotate their functions automatically. Several statistical and 

machine learning methods have been proposed in this regard e.g. the Bayes network method [11], support vector 

machine [2, 12, 13, 14] and the Hidden Markov models [15, 16, 17]. Although these methods classify GPCRs with 

high accuracy but none of these provide hierarchical GPCRs classification. The GPCRs are hierarchically classified 

into 4 levels i.e. super family level, family level, sub family level and type level by Gao et al. [18]. The data set used 

in this method consists of 1406 GPCRs sequences and 1406 Globular proteins (non-GPCRs). In the first level, 

GPCRs are discriminated from non-GPCRs. In the second level, 6 families of GPCRs are classified. The Rhodopsin-

like family is further classified into sub families in the third level. While in the fourth level, sub-sub families of 

amine subfamily and olfactory subfamily are predicted. GPCRs are classified into three levels i.e. super family, 

family and specific receptor subtype by Attwood et al. [2]. GPCRs are also hierarchically classified into 3 levels by 

Matthew et al. [19]. In the first level GPCRs are classified into 5 families (Class F is ignored), while in the second 

level, GPCRs are classified into 40 sub families. Finally, in the third level, GPCRs are classified into 108 sub-sub 

families. They have also developed an online GPCRs prediction server, which is available at [20]. Both of these 

hierarchical classification methods provide good overall accuracies.  

In this paper, we have classified GPCRs into three levels. First, we have classified GPCRs into 5 families, then into 

40 sub families and finally into 108 sub-sub families as done by Matthew et al. [19]. Frizzled/Smoothened receptors 

family is ignored as it contains too few sequences from which to developing an accurate classification algorithm. 

Three feature extraction strategies are used. The first one is the Pseudo amino acid composition (PseAA) [21], which 

is used in two ways i.e. using two/three physiochemical properties of GPCRs. In the second feature extraction 

strategy, a hybrid feature vector (MSE-PseAA) is formed by combining wavelet based multi-scale energy (MSE) and 
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PseAA based features [22]. Third one is also a hybrid feature vector (MSE-AA) formed by the combination of Amino 

acid composition and MSE features. We have used three classifiers and Jackknife test is used to evaluate the 

performance of the classifiers for each feature extraction strategy. These three classifiers are support vector machine 

(SVM), nearest neighbor (NN) and Probabilistic neural network (PNN). Aim of this research is to assess different 

feature extraction strategies and to develop hybrid feature-extraction strategies that can exploit the discrimination 

capability in spatial as well as transform domain. We have developed a web predictor (GPCR-Hybrid), which takes 

unknown GPCR sequence as input and classifies it, first into family, then into sub family and finally,  into sub-sub 

family. At each level, the proposed GPCR-Hybrid method selects the best performing feature extraction strategy and 

the classifier to predict the class of the test sequence as shown in Figure 1.  

Figure 1 comes here 

The GPCRs dataset that we have used is taken from BIAS-PROFS website [20]. The overall performance of our 

proposed approach is better than the existing hierarchical GPCR classification methods.  

2. MATERIALS AND METHODS 

2.1. Data Sets 

The dataset that we have mainly used for the training and assessment of our classification approach was downloaded 

from the BIAS-PROFS website [20] developed by Matthew et al. in 2007. GPCR sequences for the dataset were 

identified using the Entrez search and retrieval system [23]. The Text based searching was used to identify all 

sequences within each sub-sub family of the hierarchy. GPCR sequences shorter than 280 amino acids in length 

were also removed. Finally, all the identical sequences within the dataset were removed to avoid redundancy. 

Generally, a homology bias is avoided using a cutoff threshold of 25% [24]. However, in this study, the dataset by 

Mathew et al. has not been put to such a stringent criterion, as the numbers of GPCRs for some of the classes would 

be too few in number to have statistical significance. Hence, we have used the dataset by Mathew et al.[19] as it is 

and consequently have not applied any additional processing. The dataset consist of 8354 GPCR sequences. Out of 

which, 5526 sequences belong to Rhodopsin like, 625 belong to Secretin like, 2172 belong to Metabotropic 

glutamate, 13 belong to Fungal pheromone and 18 belong to cAMP receptors family. 

In addition, we have also used three other benchmark datasets for comparison with existing methods. These datasets 

were constructed using older versions of GPCRDB and it is reported that they avoid homology bias largely. For 
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simplicity, they are referred to as D167, D566 and D365 containing 167, 566 and 365 GPCR sequences, 

respectively. The GPCRs in the dataset D167 [25] (belonging to the sub-sub family level) are classified into four 

sub-sub families i.e. (1) acetylcholine (2) adrenoceptor (3) dopamine and (4) serotonin. The dataset D566 [26] 

(belonging to sub-sub family level) contains GPCRs belonging to seven sub-sub families i.e. (1) Adrenoceptor (2) 

Chemokine (3) dopamine (4) Neuropeptide (5) Olfactory type (6) Rhodopsin (7) serotonin. The last dataset D365 

[27] (belonging to the family level) contains GPCRs belonging to six families: (1) Rhodopsin-like (2) Secretin-like 

(3) Metabotrophic glutamate pheromone (4) Fungal pheromone (5) cAMP receptor and (6) Drizzled/smoothened 

family. Chou and Elrod [25, 26, 27] reported that all the receptor sequences in the above mentioned datasets were 

generally lower than 40%, according to their definition of the average sequence identity percentage between two 

protein sequences. 

2.2. Sequence representation 

2.2.1. Amphiphilic Pseudo amino acid composition (PseAA)  

To avoid losing much important information hidden in protein sequences, the pseudo amino acid composition 

(PseAAC) was proposed [28] to replace the simple amino acid composition (AAC) for representing the sample of a 

protein. PseAAC has been widely used to study various problems in proteins and protein-related systems, such as: 

predicting sub-cellular location of proteins [29] and GPCR types [30]. However, to the best of our knowledge, so far 

PseAAC has not been used for predicting GPCRs and their types in conjunction with the approach of multi-scale 

energy representation of different physiochemical properties. The present study was devoted to do so, and quite 

encouraging results have been obtained. 

The conventional amino acid composition uses only the frequency of occurrence of each amino acid in the GPCRs 

sequence. Unlike the conventional amino acid composition, the PseAA composition approach as used in [22, 29] is 

adopted in the current study. It preserves sequence order and sequence-length information. The GPCRs sequence R, 

with L amino acids, where L represents the length of protein sequence, can be represented as shown by the Eq. (1). 

R = R1, R2… RL                                                                                (1) 

where R1 represents the amino acid at position 1 and RL is amino acid at position L in the sequence R. Its respective 

PseAA representation is given in Eq. (2). 

PseAA = P1, P2…P20… PΛ                                                                                                                  (2) 



  

7 
 

where Λ = 20+ n*   (  is the numbers of tiers used in PseAA, = 0, 1,…m and n is the number of physiochemical 

properties used for each GPCR sequence). The value of  and the optimal selection physiochemical properties can 

influence the classification performance. In our case we have selected = 21 and analyzed the performance by using 

different combination of physiochemical properties. We have taken = 21 because it is giving best results in our 

case. The first 20 elements i.e. P1, P2… P20 are the occurrence frequencies of the 20 amino acids. The remaining P21, 

P22… PΛ elements are 1st-teir to -tier correlation factors of amino acid sequences in the GPCR chain. These 

elements are determined based on physiochemical properties. There are many physiochemical properties. In our 

present research, we have used three physiochemical properties i.e. hydrophobicity, electronic and bulk properties. 

The word hydrophobic literally means afraid of water. It is obvious that hydrophobic residues prefer to be in a non-

aqueous environment such as a lipid bilayer. Biological molecules can contain large non-polar regions.  These non-

polar regions may also be described as hydrophobic region.  Hydrophobicity of proteins is one of the most important 

factors in determining a GPCR’s structure and function.  However, with different experimental conditions, different 

organic solvents and computing approaches, hydrophobicity value per amino acid will be different. Various scales of 

hydrophobicity are employed such as KDH, MH, and FH, etc. However, the FH hydrophobicity scale [31] has been 

proved the most discriminative out of these hydrophobicity measures [32]. Hence, we have used FH scale for 

hydrophobicity measure in present research.  Electronic property has been modeled using electron ion interaction 

pseudopotential (EIIP) model [33]. EIIP value describes the average energy states of all valence electron of amino 

acids. Electrons delocalized  from  the  particular  amino acid have  the  strongest impact  on  the  electronic  

distribution  of  the whole  protein. Hence, we have chosen EIIP model for electronic property measurement. 

Finally, the bulk property has been modeled using composition, polarity, and molecular volume model (CPV) [34]. 

Polarity and volume (size) are known to have a great impact on the folding of the protein. Hence, CPV model has 

been used in the present research to model bulk property. 

We have assessed the performance of the classifier by first considering two physiochemical properties i.e. the 

electronic and the bulk property. Then, the third property (Hydrophobicity) is also included, which has slightly 

enhanced the overall performance. The PseAA using two physiochemical properties is termed as PseAA2. The 

length of feature vector in PseAA2 is Λ = 20+ 2*21 i.e. 62. The PseAA using three physiochemical properties is 

termed as PseAA3. The length of feature vector in PseAA3 is 83. 
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2.2.2. Wavelet based multi-scale energy (MSE) and Pseudo amino acid composition (PseAA) based hybrid 

feature extraction method 

The discrete wavelet transform (DWT) is a  representation of signal using an orthonormal basis consisting of 

countably infinite set of discrete wavelets. There are several methods for implementing DWT, we have used 

Mallat’s Fast algorithm in the present method. The basic idea of the fast algorithm is to represent the mother wavelet 

as a set of high pass and low pass filter banks. The signal is passed through the filter banks and decimated by a factor 

of 2. The outputs of the low pass filter are wavelet approximation coefficients, and those of the high pass filter are 

wavelet detail coefficients. We have focused on low frequency components because the high-frequency components 

are noisier. This is just like the case of protein internal motions where the low-frequency components are 

functionally more important. 

In this feature extraction strategy, first the GPCR sequences are converted into the numeric form using 

hydrophobicity values. We have used FH scale for computing Hydrophobicity values. The significance of 

Hydrophobicity property is discussed in section 2.2.1. Each of the amino acid is simply replaced with its 

corresponding value in the FH scale [31]. The resulting numeric form is homologous to a digital signal. Next, the 

wavelet (Haar) transform of this digital signal is taken. Then the approximation and detailed coefficients are 

calculated. The decomposition level for a sequence is taken as Log2 (length of sequence). For example if a sequence 

length is of 8000 amino acids, then the decomposition levels for that sequence would be 13. The length of sequences 

may not be same; hence, zero padding is performed in case of shorter sequences to keep consistency in the size of 

feature vector. The overall feature vector formed in this way is termed as MSE [35]. Hence, the MSE-feature vector 

of (m+1)-Dimensions is formed as given in the Eq. (3): 

MSE(k) = [ d1
k  ,  d2

k  …  dm
k  , am

k   ]                                              (3) 

where k  = 1 , 2 , … N,  N is total number of GPCR sequences, dj
k  is the root mean square energy of wavelet detail 

coefficients in the corresponding jth scale and am
k is the root mean square energy of wavelet approximation 

coefficients in mth scale as shown by Eq. (3) and (5), respectively. 

=                                                 (4) 

=                                                    (5) 
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where Nj is the number of wavelet detail coefficients, Nm is the number of wavelet approximation coefficients , 

uj
k(n) is the nth detail coefficient in the jth scale and vm

k(n) is the nth approx coefficient in the mth scale. The scale here 

means the decomposition level. 

 Finally, MSE-features are combined with PseAA3 to form MSE-PseAA feature vector as given by the Eq. (6)  

MSE-PseAA = [P1, P2…P20… PΛ ,  λ1
k, λ2

k… λ k
m+1]                                          (6) 

where P1, P2…P20… PΛ are the PseAA features and the remaining ( λj
k=dj

k and λk
m+1=am

k ) are given by MSE feature 

extraction strategy.  

2.2.3. Wavelet based multi-scale energy (MSE) and amino acid composition (AA) based hybrid feature extraction 

method 

In this feature extraction strategy, first the GPCR sequences are converted into the numeric form using FH scale. 

The amino acid composition calculates the frequency of occurrence of each amino acid in the GPCR sequence. 

There are 20 amino acids. Hence a 20 dimensional feature vector is formed, which is combined with MSE features to 

form a hybrid feature vector (MSE-AA) as given by the Eq. (7). 

Xk = [P1
k , P 2

k … P 20
k  , λ1

k, λ2
k … λ k

m+1]                                                 (7) 

where the first twenty features (P 1
k to P 20

k) are given by Amino acid and the remaining ( λj
k=dj

k and λk
m+1=am

k ) are 

given by MSE feature extraction strategy. 

2.3. Nearest Neighbor 

The Nearest Neighbor algorithm (NN) is a method for classifying objects based on nearest training examples in the 

feature space. A point in the space is assigned to the class C, if its Euclidean distance to class C is the minimum. 

Euclidian distance is calculated using the Eq. (8). 

                                                  (8) 

The Minimum Euclidean distance is calculated using Eq. (9) as: 

                                         (9) 

where X .Xi is the dot product of vectors X and Xi, and ||X|| and ||Xi|| are , respectively their modulus. The sample 

under question is assigned the category corresponding to the training sample Xk. 

2.4. Support vector machines 

The SVM classifier inherently is a binary classifier, but it can be tailored for multi-classification as well. The SVM 



  

10 
 

model finds a decision surface that has maximum distance to the closest points in the training set.  The classification 

problem is solved as a quadratic optimization problem. The training principle of SVM is to find an optimal linear 

hyper plane such that the classification error for new test samples is minimized. For linearly separable sample 

points, hyper plane is determined by maximizing the distance between the support vectors [36, 37, 38].  

As our problem is a multi-class problem, so we have adopted the one-vs-all strategy, while using the LIBSVM 2.88-1 

software (Chang and Lin 2008). We have evaluated the performance of SVM using four different types of kernel i.e 

Linear (Lin-SVM), Polynomial (Poly-SVM), Radial Basis Function (RBF-SVM) and Sigmoidal (Sig-SVM). The 

LIBSVM 2.88-1 solves SVM problem using Nonlinear Quadratic Programming technique. During parameter 

optimization of SVM models, the average accuracy of SVM model is maximized.  

2.5. Probabilistic Neural Network  

The Probabilistic Neural Network (PNN) is developed in 1990 by Specht [39] and is based on Bayes theory. It 

estimates the likelihood of a sample being part of a learned category. The PNN consists of four layers; an input, 

pattern, summation, and decision layers. The input layer has N nodes each corresponding to one independent 

variable. These input nodes are then fully connected to the M nodes of the pattern layer. The PNN receives n 

dimensional feature vector as input i.e. xi = x1, x2,… xn..  This input vector is applied to the input neurons and is 

passed to the neurons in Pattern layer. Here mk Gaussian functions are calculated for each class k (1 ≤ k ≤ c) as given 

by the Eq. (10). 

                                     (10) 

where  is the mean of and  is the covariance matrix of the distribution. The summation layer computes the 

approximation of the class probability functions as given in the Eq. (11). 

                                                                          (11) 

where  is the within class mixing proportion and   =1 for k =1,2 … c .The decision layer computes the 

risk as given in the Eq. (12). 

                                                                           (12) 

where  indicates the prior probability and    is the weight of class l. Hence, the test sample is assigned the label 

of class, for which risk is the minimum. 
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The PNN calculates most of the terms from the training data. The only that need to be optimized is the smoothing 

factor, which controls the deviations of Gaussian functions. The optimized range of smoothing factor, in our case 

varies from 0.01 to 5.  

2.6. Performance Measures 

In statistical prediction, three cross-validation methods are often used to examine a predictor for its effectiveness in 

practical application i.e. independent dataset test, sub-sampling test and jackknife test. However, among the three 

cross-validation methods, the jackknife test is deemed the most objective that can always yield a unique result for a 

given benchmark dataset, and hence has been increasingly used by investigators to examine the accuracy of various 

predictors. Accordingly, the jackknife test was also adopted here to examine the quality of the present predictor. In 

the jackknife test, one of the sequence patterns is considered as the test sample and the remaining N-1 sequences are 

taken as the training patterns. The label of the test sequence is predicted using the rest of the N-1 training sequences. 

The process is repeated for N times and the label of each sample is predicted. The performance metrics used for the 

evaluation of the classifiers are overall accuracy, Sensitivity, Specificity, Mathew Correlation Coefficient (MCC) 

and F-measure. The TP (true positive) and TN (true negative) are the number of correctly predicted positive and 

negative samples. The FP (false positive) and FN (false negative) are the number of incorrectly predicted positive 

and negative samples. 

2.6.1. Accuracy 

The Accuracy assesses the overall effectiveness of the algorithm. It is given by the Eq. (13) 

 * 100                     (13) 

2.6.2 Sensitivity  

                                                                        (14) 

2.6.3. Specificity 

                                                                                                 (15)  

2.6.4. MCC 

MCC is takes values in the interval of [−1, 1].  A value of 1 means that the classifier never makes any mistakes and 

a value -1 means that the classifier always makes mistakes. MCC is given by the Eq. (20) as:        
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                                                      (16) 

2.6.5 F-measure 

F-measure is a measure of the accuracy of a test, which considers both the precision and the recall of the test to 

compute the score. The F-measure can be interpreted as a weighted average of the precision and recall, where an F-

measure reaches its best value at 1 and worst score at 0. 

                                              (17) 

                                        (18) 

                                                                       (19) 

2.7. Proposed GPCR-Hybrid method 

The GPCR-Hybrid is a web predictor, which can efficiently classify unknown GPCR sequence, first into Family, 

then into sub family and finally into sub-sub family. The performance of each classifier is assessed individually for 

each of the feature extraction strategy. At first, the GPCR-Hybrid program asks for the input GPCR sequence using 

a graphical user interface as shown in the Figure 2. The input GPCR sequence should be in capital letters. As soon 

as the user clicks on the Submit button, it extracts features of input sequence using the best performing feature 

extraction strategy of family level and applies the best performing classifier for predicting the family class. For 

family level, the best performing feature extraction strategy is PseAA2 and the best performing classifier is SVM. 

Hence, PseAA2 and SVM are selected by GPCR-Hybrid for predicting family class of the test GPCR sequence. 

Once, the family class is predicted, features are extracted again using the best performing feature extraction strategy 

of sub family level. The sub family class of input sequence is then predicted using the best performing classifier of 

sub family level. The MSE-PseAA is selected by GPCR-Hybrid for feature extraction at sub family level and SVM is 

used to predict sub family class. Finally, the sub-sub family of input sequence is predicted. The sequence is 

converted into numeric form using MSE-PseAA and its class is predicted using SVM. The algorithm of GPCR-

Hybrid is shown in Figure 1. 

Figure 1 comes here 

After the prediction of family, sub family and sub-sub family level classes, the names of the classes are displayed as 

shown in the Figure 2.  
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Figure 2 comes here 

The proposed GPCR-Hybrid is available at http://111.68.99.218/GPCR.  

3. RESULTS AND DISCUSSION 

In the GPCR-Hybrid method, the hierarchical classification task is performed into three stages. First stage predicts 

the family of the GPCR sequence; second stage predicts the sub family and finally in the third stage sub-sub family 

of the sequence is predicted. We have used three feature extraction strategies for the sake of sequence conversion 

into numeric form. First feature extraction strategy is the PseAA, which is used in two ways. The second feature 

extraction strategy is named as MSE-PseAA, which is a hybrid feature vector formed by combining Pseudo amino 

acid with wavelet based Multi scale energy (MSE) features. The third feature extraction strategy is named as MSE-

AA. It is also a Hybrid feature vector formed by combining Multi scale energy based features with Amino acid 

composition (AA) based features. The details of these feature extraction strategies are given in section 2.2. We have 

used three classifiers to assess the performance for each feature extraction strategy. 

 At each stage, the best performing classifier and the feature extraction strategy is selected by the GPCR-Hybrid 

program. The details of the prediction results for each level are described in the following sections. 

3.1. Classification at Family level 

We have classified GPCRs into five families. Frizzled and Smoothened receptors family (class F) is ignored, 

because current protein databases do not have enough sequences belonging to this family. For performance 

measurements, we have used overall accuracy, Sensitivity, Specificity, Mathew Correlation Coefficient (MCC) and 

F-measure. The formulas of all these measures have been described in the section 2.6. The performance 

measurements using NN, PNN and SVM for each of the feature extraction strategy are described below. 

3.1.1. Classifiers performance using PseAA2 

The overall accuracies achieved by using the NN, PNN and SVM classifiers for PseAA2 feature extraction strategy 

are: 97.22 %, 97.38% and 97.86%, respectively. The optimal smoothing factor for PNN is chosen as 1. The MCC 

measures using NN, PNN and SVM are: 0.93, 0.94 and 0.95, respectively. The Specificity measures using NN, PNN 

and SVM are: 96.50 %, 96.72 % and 96.89 %, respectively. The Sensitivity measures using NN, PNN and SVM are: 

98.13%, 98.22 % and 98.95%, respectively. The F-measures using NN, PNN and SVM are: 0.96, 0.96 and 0.97, 

respectively. 



  

14 
 

3.1.2. Classifiers performance using PseAA3 

The overall accuracies obtained by using the NN, PNN and SVM classifiers for PseAA3 are: 97.58%, 97.74% and 

93.66%, respectively. The optimal smoothing factor for PNN is chosen as 0.6. The MCC measures using NN, PNN 

and SVM are: 0.94, 0.94 and 0.85, respectively. The Specificity measures using NN, PNN and SVM are: 96.96%, 

97.16% and 89.83%, respectively. The Sensitivity measures using NN, PNN and SVM are: 98.41%, 98.52% and 

98.04%, respectively. The F-measures using NN, PNN and SVM are: 0.96, 0.96 and 0.90, respectively. 

3.1.3. Classifiers performance using MSE-PseAA 

The overall accuracies obtained by using the NN, PNN and SVM classifiers for MSE-PseAA strategy are: 96.89%, 

96.98% and 97.41%, respectively. The MCC measures using NN, PNN and SVM are: 0.92, 0.93 and 0.94, 

respectively. The Specificity measures using NN, PNN and SVM are: 96.01%, 96.16% and 96.58%, respectively. 

The Sensitivity measures using NN, PNN and SVM are: 97.97%, 98.01% and 98.43%, respectively. The F-measures 

using NN, PNN and SVM are: 0.96, 0.96 and 0.90, respectively. 

3.1.4. Classifiers performance using MSE-AA 

The overall accuracies obtained by using the NN, PNN and SVM classifiers for MSE-PseAA strategy are: 96.22%, 

96.28% and 97.06%, respectively. The MCC measures using NN, PNN and SVM are: 0.91, 0.91 and 0.93, 

respectively. The Specificity measures using NN, PNN and SVM are: 95.08%, 95.22% and 96.06%, respectively. 

The Sensitivity measures using NN, PNN and SVM are: 97.59%, 97.57% and 98.23%, respectively. The F-measures 

using NN, PNN and SVM are: 0.94, 0.94 and 0.95, respectively. 

For family level classification, PseAA2 using SVM is giving the best performance. It has best Accuracy, MCC, 

sensitivity and F-measure values, while Specificity measure is also comparable. Hence, PseAA2 is used for family 

level-feature extraction and SVM is used for family level class prediction. The results for family level classification 

are summarized in Table 1.  

Table 1 comes here 

In the table I, the performance metrics i.e. Accuracy, MCC, Specificity, Sensitivity and F-measure are given as 

column wise. Their measurements using each of the classifier and feature extraction strategy are given row wise. It 

is clearly shown that RBF-SVM has shown the best performance using PseAA2. 
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3.2. Classification at sub Family level  

We have classified GPCRs into 40 sub families. The performance measures used at the sub family level are: overall 

accuracy, Sensitivity and Specificity. These performance measurements using NN, PNN and SVM classifiers are 

described in the sections given below.  

3.2.1. Classifiers performance using PseAA2 

The overall accuracies obtained by using the NN, PNN and SVM classifiers for PseAA2 strategy are: 81.02%, 

82.13% and 81.58%, respectively. The Specificity measures using NN, PNN and SVM for sub family level are: 

80.99%, 82.10% and 81.55%, respectively. The Sensitivity measures using NN, PNN and SVM are: 80.55%, 81.30% 

and 81.15%, respectively.  

3.2.2. Classifiers performance using PseAA3 

The overall accuracies achieved by using the NN, PNN and SVM classifiers for PseAA3 are: 81.88%, 83.47% and 

79.02%, respectively. The Specificity measures using NN, PNN and SVM are: 81.85%, 83.42% and 78.98%, 

respectively. The Sensitivity measures using NN, PNN and SVM are: 81.52%, 83.18% and 78.85%, respectively.  

3.2.3. Classifiers performance using MSE-PseAA 

The overall accuracies obtained by using the NN, PNN and SVM classifiers for MSE-PseAA strategy are: 80.73%, 

80.36% and 84.97%, respectively. The Specificity measures using NN, PNN and SVM are: 80.69%, 80.27% and 

84.94%, respectively. The Sensitivity measures using NN, PNN and SVM are: 80.72%, 81.24% and 84.08%, 

respectively.  

3.2.4. Classifiers performance using MSE-AA 

The overall accuracies obtained by using the NN, PNN and SVM classifiers for MSE-PseAA strategy are: 78.55%, 

78.29% and 80.96%, respectively. The Specificity measures using NN, PNN and SVM are: 78.51%, 78.21% and 

81.90%, respectively. The Sensitivity measures using NN, PNN and SVM are: 78.51%, 78.79% and 81.95%, 

respectively.  

For the sub family-level classification, SVM is performing best using MSE-PseAA feature extraction strategy. The 

values of all the three performance metrics i.e. Accuracy, Specificity and sensitivity are the best. Hence, the MSE-

PseAA and RBF-SVM are selected by GPCR-Hybrid for GPCRs sub family level classification. The results for sub 

family-level classification are summarized in Table 2.  

Table 2 comes here 
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Three performance metrics are used for the performance evaluation. It is clearly shown in the Table 2 that the values 

of Accuracy, Specificity and Sensitivity are the highest for SVM classifier with MSE-PseAA feature extraction 

strategy. The best values of performance metrics are shown in bold letters. 

3.3. Classification at sub-sub Family level  

We have classified GPCRs into 108 sub-sub families. The performance metrics used at the sub-sub family level are: 

overall accuracy, Sensitivity and Specificity. The details of the performance measurements are described in the 

sections given below.  

3.3.1. Classifiers performance using PseAA2 

The overall accuracies obtained by using the NN, PNN and SVM classifiers for PseAA2 are: 72.95%, 72.88% and 

72.65%, respectively. The Specificity measures using NN, PNN and SVM for sub family level are: 73.01%, 72.94% 

and 72.70%, respectively. The Sensitivity measures using NN, PNN and SVM are: 69.02%, 67.77% and 67.08%, 

respectively.  

3.3.2. Classifiers performance using Pseudo PseAA3 

The overall accuracies achieved by using the NN, PNN and SVM classifiers for PseAA3 are: 73.67%, 74.29% and 

68.78%, respectively. The Specificity measures using NN, PNN and SVM are: 73.72%, 74.35% and 68.81%, 

respectively. The Sensitivity measures using NN, PNN and SVM are: 69.71%, 69.82% and 68.96%, respectively.  

3.3.3. Classifiers performance using MSE-PseAA 

The overall accuracies obtained by using the NN, PNN and SVM classifiers for MSE-PseAA feature extraction 

strategy are: 72.48%, 71.10% and 75.60%, respectively. The Specificity measures using NN, PNN and SVM are: 

72.53%, 71.15% and 70.32%, respectively. The Sensitivity measures using NN, PNN and SVM are: 69.01%, 67.67% 

and 75.67%, respectively.  

3.3.4. Classifiers performance using MSE-AA 

The overall accuracies obtained by using the NN, PNN and SVM classifiers for MSE-PseAA are: 69.75%, 69.53% 

and 73.45%, respectively. The Specificity measures using NN, PNN and SVM are: 69.80%, 68.58% and 73.59%, 

respectively. The Sensitivity measures using NN, PNN and SVM are: 66.32%, 65.01% and 69.89%, respectively.  

For the sub-sub family-level classification, MSE-PseAA with SVM classifier is performing the best and hence, 

selected by GPCR-Hybrid for sub-sub family level classification of any test GPCR sequence. The values of all the 
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three performance metrics i.e. Accuracy, Specificity and sensitivity are the best. The results for sub family-level 

classification are summarized in Table 3.  

Table 3 comes here 

For sub-sub family level, we have three performance metrics i.e. Accuracy, Specificity and Sensitivity, as shown in 

Table 3. The best performance is given by RBF-SVM classifier using MSE-PseAA feature extraction strategy; shown 

bold in Table 3.   

3.4. Comparison with other hierarchical GPCRs classification methods 

3.4.1. Comparison with Selective top down method 

As we have shown in the sections: 3.2 and 3.3 that SVM has outperformed using MSE-PseAA feature extraction 

strategy as compared to the other classifiers at sub family and sub-sub family level. While at family level, SVM 

classifier with PseAA2 is performing the best as explained in section 3.1. Hence, we have used the results of SVM in 

comparison with Selective top down approach [19]. The performance metric used in Selective top down approach is 

the overall accuracy. Hence, we have compared the accuracy of our approach with that of Selective top down 

approach. The results achieved by our approach are slightly better than the Selective top down approach. The best 

overall Accuracy achieved in Selective top down approach, for family level is 95.87%, while GPCR-Hybrid has 

achieved an overall accuracy equal to 97.86%. For sub family level, the Selective top down approach has an overall 

accuracy equal to 80.77% and GPCR-Hybrid has achieved an accuracy of 84.97%. Finally, for sub-sub family level, 

Selective top down approach has accuracy equal to 69.98% and the accuracy achieved by GPCR-Hybrid is equal to 

75.60%. At sub family and sub-sub family level, there is much improvement in the performance, which is because 

of hybrid feature-extraction strategy. The GPCR-Hybrid has performed better than the Selective top down method at 

all of the GPCR classification levels. The comparison of results is shown in Table 4. 

Table 4 comes here 

3.4.2. Comparison with other existing methods 

We have also performed comparisons using three existing datasets; D167, D566 and D365. As these datasets 

represent GPCRs sequences belonging only to one level, the comparison with all of the three datasets is performed 

at only one level. In addition, the performance measurement used for comparison is overall accuracy. We have 

computed results on each of these datasets using SVM classifier with four different kernels i.e. Lin-SVM, Poly-

SVM, RBF-SVM and Sig-SVM. The best of these four kernels have been chosen for classification. 
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The dataset D167 has been used by many researcher to test their methods. We have compared our method with six 

such methods [25, 40, 41, 42, 43, 44]. One of these six methods, which is termed as PCA-GPCR [44] is reported in 

2010. We have observed that the overall accuracy achieved by our method is higher than these methods. The 

comparison with these six methods is shown in Table 5. 

Table 5 comes here 

We have compared our method with two existing methods on dataset D365. First method is termed as GPCR-CA 

[45] and second one is named as PCA-GPCR [44]. The overall accuracies achieved by GPCR-CA and PCA-GPCR 

method are 83.56% and 92.60% respectively. The overall accuracy achieved by the proposed GPCR-Hybrid method 

is 91.72%, which is almost 9% higher than GPCR-CA method and is comparable to PCA-GPCR method. The 

comparison on D365 is shown in Table 6. 

Table 6 comes here 

Finally, on D566 dataset, we have compared our method with PCA-GPCR method. The overall accuracy achieved 

by PCA-GPCR method is 97.88, while the accuracy achieved by our proposed method is 97.91%. The comparison 

on D365 is shown in Table 7. 

Table 7 comes here 

The improvement in performance of GPCR-Hybrid method over the existing methods is because of using the hybrid 

combination of MSE and PseAA based features. In this way, both the spatial and transform domains are exploited at 

the same time. In addition, the optimization of SVM parameters and usage of proper kernel for a dataset has also 

contributed in the improved performance of GPCR-Hybrid. 

3. CONCLUSIONS 

In this work, we have hierarchically classified GPCRs into three level i.e. family, sub family and sub-sub family 

levels. We have developed a web predictor, which is able to predict a GPCR sequence with effective accuracy. This 

web predictor can be very helpful for pharmacists for annotating the unknown GPCRs. Once the input GPCR is 

categorized, its function can be learned and it can be used in the relevant drug. We have observed that using hybrid 

feature-extraction strategy, the overall performance of the GPCRs predictor can be improved. It is shown that by 

using hybrid feature-extraction strategy, which exploits both the spatial and transform domain variation of amino 

acid composition, the different types of GPCRs can be discriminated in a better way and consequently, high 

prediction performance can be achieved. We have also observed that SVM performs better than that of PNN and NN 
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for GPCR classification at any level. The performance of SVM classifier seems to be less affected by the curse of 

dimensionality. In addition, if more physiochemical properties are used, while representing GPCR sequences, the 

overall prediction performance might be further improved. 

ACKNOLEDGMENT 

This work was supported by the Higher Education Commission (HEC) under indigenous PhD program ( 074-1844-

PS4-406). 

REFRENCES 

[1] K.H. Lundstrom and M.L. Chiu, G- protein coupled receptors in drug discovery, CRC Press, Taylor & Francis Group 6000 Broken Sound 

Parkway NW, Suite 300 Boca Raton, FL 33487-2742, 2006. 

[2] M. Bhasin ,  G.P.S. Raghava, GPCRpred: an SVM-based method for prediction of families and sub-families of G-protein coupled receptors, 

Nucleic Acids Res. 32 (2004), 383-389. 

[3] SF. Altschul, W. Gish, W. Miller, EW. Myers, DJ. Lipman, Basic local alignment search tool, J Mol Biol. 215 (1990), 403–410. 

[4] D. Fridmanis, R. Fredriksson, I. Kapa, B.S. Helgi and J. Klovins, Formation of new genes explains lower intron density in mammalian 

Rhodopsin G protein-coupled receptors, Molecular Phylogenetics and Evolution, 43 (2006), 864–880.  

[5] J.CR. Cardoso, V.C. Pinto, F.A. Vieira, M.S. Clark and D.M. Power, Evolution of secretin family GPCR members in the metazoa. BMC 

Evol. Biol. 6(2006),108. 

[6] S.S. Das, and G.A. Banker, The role of protein interaction motifs in regulating the polarity and clustering of the metabotropic glutamate 

receptor mGluR1a, J. Neurosci. 26 (2006), 8115–8125. 

[7] T. Nakagawa, T. Sakurai, T. Nishioka and K. Touhara, Insect sex-pheromone signals mediated by specific combinations of olfactory 

receptors, Science 307 (2005), 1638–1642. 

[8] Y. Prabhu and L. Eichinger, The Dictyostelium repertoire of seven transmembrane domain receptors. Eur. J. Cell Biol. 85 (2006), 937–946. 

[9] SM. Foord, S. Jupe and J. Holbrook, Bioinformatics and type II G-protein-coupled receptors, Biochem. Soc. Trans. 30 (2002), 473–479. 

[10] M. Lapinsh, A. Gutcaits, P. Prusis, C. Post, T. Lundstedt and JE. Wikberg, Classification of G-protein coupled receptors by Alignment 

independent extraction of principal chemical properties of primary amino acid sequences. Protein Sci. 11 (2002), 795-805. 

[11] J. Cao, R. Panetta, S. Yue, A. Steyaert, M. Young-Bellido and S. Ahmad, A naive Bayes model to predict coupling between seven 

transmembrane domain receptors and G-proteins, Bioinformatics 19 (2003), 234-240. 

[12] M. Bhasin and G.P.S.  Raghava, GPCRsclass: a web tool for the classification of amine type of Gprotein-coupled receptors, Nucleic Acids 

33 (2005), 143-147. 

[13] R. Karchin, K. Karplus and D. Haussler, Classifying G-protein coupled receptors with support vector machines. Bioinformatics 18 (2002), 

147-159. 



  

20 
 

[14] JX. Wang, P. Qin, QL. Liu, HY. Yang , YZ.  Fan, Yu JK, S. Zheng, Detection and Significance of Serum Protein Marker of Hirschsprung 

Disease, Protein Eng. 120 (2007), e56-e60. 

[15] S. Möller, J. Vilo and MD. Croning, Prediction of the coupling specificity of G protein coupled receptors to their Gproteins, Bioinformatics 

17 (2001), 174-181. 

[16] PK. Papasaikas, PG. Bagos, ZI. Litou, SJ. Hamodrakas, A novel method for GPCR recognition and family classification from sequence 

alone using signatures derived from profile hidden Markov models, SAR and QSAR Environmental Research 14 (2003), 413-420. 

[17] P.L. Martelli , P. Fariselli, L. Malaguti and R. Casadio, Prediction of the disulfide bonding state of cysteines in proteins with hidden neural 

networks, Protein Eng. 15 (2002), 951-953.  

[18] QB. Gao, Classification of G-Protein coupled receptors at four levels, Protein engineering, Design & Selection 19 (2006), 511-516. 

[19] M.N. Davies, A. Secker, A.A. Freitas, M. Mendao, J. Timmis and D.R. Flower, On the Hierarchical classification of G-Proteon coupled 

receptors,  Bioinformatics 23 (2007), 3113-3118. 

[20] GPCRs dataset, http://www.cs.kent.ac.uk/projects/biasprofs/ 

[21] KC. Chou, Prediction of protein cellular attributes using pseudo-amino-acid-composition, Proteins 43 (2001), 246-255. 

[22] A. Khan, M.F. Khan, T. Choi, Proximity Based GPCRs Prediction in Transform Domain, Biochemical and Biophysical Research 

Communications 371 (2008), 411–415. 

[23] D.L. Wheeler, T. Barrett, D.A. Benson, S.H. Bryant, K. Canese, D.M. Church, M. DiCuccio, R. Edgar, S. Federhen, W. Helmberg, D.L. 

Kenton, O. Khovayko, D.J.  Lipman, T.L. Madden, D.R. Maglott, J. Ostell, J.U. Pontius, K.D. Pruitt, G.D. Schuler, L.M. Schriml, E. 

Sequeira, S.T. Sherry, K. Sirotkin, G. Starchenko, T.O. Suzek, R. Tatusov, T.A. Tatusova, L. Wagner and E. Yaschenko  Database 

resources of the national center for biotechnology information, Nucleic Acids Res. 35 (2007), D5–D12. 

[24] K.C. Chou, H.B. Shen, Review: Recent progresses in protein subcellular location prediction, Analytical Biochemistry 370 (2007), 1-16. 

[25] D.W. Elrod, K.C. Chou, A study on the correlation of G-protein-coupled receptor types with amino acid composition, Protein Eng Des Sel 

15 (2002), 713-715. 

[26] K.C. Chou, D.W. Elrod, Bioinformatical analysis of G-protein-coupled receptors, J Proteome Res 1 (2002), 429-433. 

[27] K.c. Chou: Prediction of G-protein-coupled receptor classes, J Proteome Res 4 (2005), 1413-1418. 

[28] K.C. Chou, Prediction of protein cellular attributes using pseudo amino acid composition. PROTEINS: Structure, Function, and Genetics 

(Erratum: ibid., 2001, Vol.44, 60) 43 (2001), 246-255. 

[29] S.W. Zhang, Q. Pan, H.C. Zhang, Z.C. Shao , J.Y. Shi,  Prediction Protein Homo-oligomer Types by Pesudo Amino Acid Composition: 

Approached with an Improved Feature Extraction and Naive Bayes Feature Fusion, Amino Acids 30 (2006), 461-468. 

[30] J.D. Qiu, J.H. Huang, R.P. Liang,  X.Q. Lu, Prediction of G-protein-coupled receptor classes based on the concept of Chou's pseudo amino 

acid composition: an approach from discrete wavelet transform, Analytical Biochemistry 390 (2009), 68-73. 

[31] Fauche`re J-L , Plis˘kaV,  Hydrophobic parameters  of amino-acid side chains from the partitioning of n-acetyl-amino-acid amides, Eur J 

Med Chem Chim Ther 18(1983), 369–375. 



  

21 
 

[32] Y.Z. Guo, M.L. Li, K.L. Wang, Z.N. Wen, M.L. Lu, L.X. Liu, L. Jiang, Fast Fourier transform-based support vector machine for prediction 

of G-protein coupled receptor subfamilies, Acta Biochim. Biophys. Sin. (Shanghai) 37 (2005) 759–766. 

[33] I. Cosic, Macromolecular bioactivity: is it resonant interaction between macromolecules?--Theory and applications, IEEE Trans Biomed 

Eng 41 (1994), 1101–1114. 

[34] R. Grantham, Amino acid difference formular to help explain protein evolution, Science 185 (1974), 862–864. 

[35] J.Y. Shi, S.W. Zhang, Q. Pan, Y.M. Cheng, J. Xie, Prediction of protein subcellular localization by support vector machines using multi-

scale energy and pseudo amino acid composition, Amino Acids 33 (2007), 69–74. 

[36] A. Khan, S. F. Tahir, A. Majid, T.S. Choi, Machine Learning based Adaptive Watermark Decoding in View of an Anticipated Attack, 

Pattern Recognition, 41, 2594-2610. 

[37] A. Khan, S. F. Tahir, T.S. Choi, Intelligent Extraction of a Digital Watermark from a Distorted Image, IEICE TRANS. INF. & SYST E91-

D (2008), 2072-2075. 

[38] J. Javed, A. Khan, A. Majid, A. M. Mirza, J.Bashir, Lattice Constant Prediction of orthorhombic ABO3 Perovskites using Support Vector 

Machines, Computational Materials Science 39 (2007), 627-634. 

[39] D.F. Specht, Probablistic neural networks, Neural Networks 3 (1990), 109-118. 

[40] Y. Huang, J. Cai, L. Ji,Y. Li, Classifying G-protein coupled receptors with bagging classifition tree, Comput Biol Chem 28 (2004),275-280. 

[41] M. Bhasin, G.P.S.  Raghava, GPCRsclass: a web tool for the classification of amine type of G-protein-coupled receptors, Nucleic Acids Res 

33 (2005),W143-W147. 

[42] Q.B. Gao, Z.Z. Wang, Classification of G-protein coupled receptors at four levels, Protein Eng Des Sel 19 (2006), 511-516. 

[43] Q.B. Gao, C. Wu, X.Q. Ma, J. Lu, J. He, Classification of amine type G-protein coupled receptors with feature selection, Protein Pept Lett 

15 (2008), 834-842. 

[44] Z. L. Peng, J. Y. Yang, X. Chen, An improved classification of G-protein-coupled receptors using sequence-derived features, BMC 

Bioinformatics 11 (2010). 

[45] Xiao X, Wang P, Chou KC: GPCR-CA: A cellular automaton image approach for predicting G-protein-coupled receptor functional classes, 

J Comput Chem 30 (2009), 1413-1423. 

 



  

22 
 

List of Figures 

1. GPCR-Hybrid Method 

2. The Graphical user interface of GPCR-Hybrid 

List of tables  

1. GPCR Classification Performance for family level 

2. GPCR Classification Performance for sub family level 

3. Classification Performance for sub-sub family level 

4. Comparison with Selective Top down method 

5. Comparison with other methods on D167 dataset 

6. Comparison with other methods on D365 dataset 

7. Comparison with other methods on D566 dataset 

 



  

23 
 

 



  

24 
 

 



  

25 
 

Table 1 

GPCR Classification Performance for family level 

 
a PseAA2 = Feature vector formed using Pseudo amino-acid by considering two Physiochemical properties of amino acids 
b PseAA3 = Feature vector formed using Pseudo amino-acid by considering three Physiochemical properties of amino acids 
c MSE-AA =   Hybrid feature vector formed by combining amino acid features with wavelet based multi scale energy features 
d MSE-PseAA =   Hybrid feature vector formed by combining Pseudo amino acid features with wavelet based multi scale energy 
features 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Classifier 
 

Feature      
extraction 
strategy 

Accuracy 
(%) 

 

Mathew’s 
Correlation 
Coefficient 

Specificity 
(%) 

 

Sensitivity 
(%) 

 

F-Measure 
 

NN 
PNN 
SVM 
 
NN 
PNN 
SVM 
 
NN 
PNN 
SVM 
 
NN 
PNN 
SVM 

PseAA2a 
PseAA2 
PseAA2 
 
PseAA3 b 
PseAA3 
PseAA3 
 
MSE-AA c 
MSE-AA 
MSE-AA 
 
MSE-PseAA d 
MSE-PseAA 
MSE-PseAA 

97.22 
97.38 
97.86 

 
97.58 
97.74 
93.56 

 
96.22 
96.28 
97.06 

 
96.89 
96.98 
97.41 

0.93 
0.94 
0.95 

 
0.94 
0.94 
0.85 

 
0.91 
0.91 
0.93 

 
0.92 
0.93 
0.94 

96.50 
96.72 
96.89 

 
96.96 
97.16 
89.83 

 
95.08 
95.22 
96.06 

 
96.01 
96.16 
96.58 

98.13 
98.22 
98.95 

 
98.41 
98.52 
98.04 

 
97.59 
97.57 
98.23 

 
97.97 
98.01 
98.43 

0.96 
0.96 
0.97 

 
0.96 
0.96 
0.90 

 
0.94 
0.94 
0.95 

 
0.95 
0.95 
0.96 
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Table 2 

GPCR Classification Performance for sub family level 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Classifier 
 

Feature 
extraction 
strategy 

Accuracy 
(%) 

 

Specificity 
(%) 

 

Sensitivity 
(%) 

 
NN 
PNN 
SVM 
 
NN 
PNN 
SVM 
 
NN 
PNN 
SVM 
 
NN 
PNN 
SVM 

PseAA2 
PseAA2 
PseAA2 

 
PseAA3 
PseAA3 
PseAA3 

 
MSE-AA 
MSE-AA 
MSE-AA 

 
MSE-PseAA 
MSE-PseAA 
MSE-PseAA 

81.02 
82.13 
81.58 

 
81.88 
83.47 
79.02 

 
78.55 
78.29 
81.96 

 
80.73 
80.36 
84.97 

80.99 
82.10 
81.55 

 
81.85 
83.42 
78.98 

 
78.51 
78.21 
81.90 

 
80.69 
80.27 
84.94 

80.55 
81.30 
81.15 

 
81.52 
83.18 
78.85 

 
78.51 
78.79 
81.95 

 
80.72 
81.24 
84.08 
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Table 3 

Classification Performance for sub-sub family level 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Classifier 
 

Feature 
extraction 
strategy 

Accuracy 
(%) 

 

Specificity 
(%) 

 

Sensitivity 
(%) 

 
NN 
PNN 
SVM 
 
NN 
PNN 
SVM 
 
NN 
PNN 
SVM 
 
NN 
PNN 
SVM 

PseAA2 
PseAA2 
PseAA2 

 
PseAA3 
PseAA3 
PseAA3 

 
MSE-AA 
MSE-AA 
MSE-AA 

 
MSE-PseAA 
MSE-PseAA 
MSE-PseAA 

72.95 
72.88 
72.65 

 
73.67 
74.29 
68.78 

 
69.75 
68.53 
73.45 

 
72.48 
71.10 
75.60 

73.01 
72.94 
72.70 

 
73.72 
74.35 
68.81 

 
69.80 
68.58 
73.59 

 
72.53 
71.15 
70.32 

69.02 
67.77 
69.08 

 
69.71 
69.82 
68.96 

 
66.32 
65.01 
69.89 

 
69.01 
67.61 
75.67 
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Table 4 

Comparison with Selective Top down method 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
GPCRs Classification 

 level 
 

Selective top-down 
Accuracy (%) [19] 

GPCR-Hybrid 
Accuracy (%) 

Family 
Sub family 
Sub-Sub Family 

95.87 
80.77 
69.98 

97.86 
84.97 
75.60 
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Table 5 

Comparison with other methods on D167 dataset 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Reference 
 

Overall 
Accuracy (%)  

[25] 
[40] 
[41] 
[42] 
[43] 
PCA-GPCR[44] 
GPCR-Hybrid 

83.23 
83.20 
96.40 
97.60 
97.60 
98.20 
98.45 
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Table 6 

Comparison with other methods on D365 dataset 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Method 
 

Overall 
Accuracy (%)  

GPCR-CA [45] 
PCA-GPCR [44] 
GPCR-Hybrid 

83.56 
92.60 
92.59 
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Table 7 

Comparison with other methods on D566 dataset 
 
 
 
 
 
 
 
 
 
 
 

 
Method 
 

Overall 
Accuracy (%)  

PCA-GPCR [44] 
GPCR-Hybrid 

97.88 
97.91 


