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Abstract

Methods to determine peridiodicity in protein sequences are useful for inferring function. Fourier transformation is one approach but care is
required to ensure the periodicity is genuine. Here we have shown that empirically-derived statistical tables can be used as a measure of
significance. Genuine protein sequences data rather than randomly generated sequences were used as the statistical backdrop. The method has
been applied to G-protein coupled receptor (GPCR) sequences, by Fourier transformation of hydrophobicity values, codon frequencies and the
extent of over-representation of codon pairs; the latter being related to translational step times. Genuine periodicity was observed in the
hydrophobicity whereas the apparent periodicity (as inferred from previously reported measures) in the translation step times was not validated
statistically. GCR2 has recently been proposed as the plant GPCR receptor for the hormone abscisic acid. It has homology to the Lanthionine
synthetase C-like family of proteins, an observation confirmed by fold recognition. Application of the Fourier transform algorithm to the GCR2
family revealed strongly predicted seven fold periodicity in hydrophobicity, suggesting why GCR2 has been reported to be a GPCR, despite
negative indications in most transmembrane prediction algorithms. The underlying multiple sequence alignment, also required for the Fourier
transform analysis of periodicity, indicated that the hydrophobic regions around the 7 GXXG motifs commence near the C-terminal end of each of
the 7 inner helices of the α-toroid and continue to the N-terminal region of the helix. The results clearly explain why GCR2 has been
understandably but erroneously predicted to be a GPCR.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Some degree of symmetry and periodicity is occasionally
observed in protein sequence and structure and this is often related
to function. Here we present criteria to ensure that periodicity
inferred from Fourier transform approaches is not over reported,
and apply thesemethods toG-protein coupled receptors (GPCRs).
Discrete Fourier transformation is one of many methods that can
be used to infer structure and function from the physical proper-
ties associated with a protein sequence. The importance of such
methods arises from the need to analyze the ever growing wealth
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of protein sequence data arising through genome projects. Fourier
analysis is particularly well-suited to looking for patterns within
the amino-acid sequences. In one of the earlier predictions of
symmetry, Zimmerman used Fourier transforms and an auto-
correlation function to search for periodicities in residue properties
such as volume and interchangeableness, and inferred a 5-residue
repeating pattern in the polarity of the residues in the bakers yeast
cytochrome c sequence [1] , which may be related to stretches of
small amino acids in the alpha helices of the protein structure.
MacLachlan and Stewart used Fourier transforms to find a 14-fold
periodicity in α-tropomysin, and demonstrated the statistical
significance of this result through a mathematical analysis of the
Fourier transform method [2] ; the 14-fold periodicity was later
confirmed by X-ray crystallography [3,4]. Statistically significant
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periodicities have also been found through the application of
Fourier transform methods to DNA sequences [5–8]. At a
more local level of protein structure, Fourier transforms have
been successfully applied in conjunction with hydrophobicity
scales to reveal amphiphilic secondary structures in protein
sequences [9–14].

More recently, weaknesses in the Fourier transform method
have been identified, for example in the potential loss of peri-
odicity when a protein is converted into a numerical sequence
[15,16], and this has led to the development of other methods of
determining periodicity in protein sequences [17,18]. However,
the Fourier transform remains a valid method for searching for
periodicity in a particular property of a sequence, especially if the
property is not necessarily related to the individual amino acids in
a simple 1-to-1 fashion (see below).

Another approach to searching for periodicity in amino acid
sequences involved the application of Fourier transform
methods to sets of proteins, and processing the transformed
sequences of individual proteins to generate a combined signal
measuring periodicities which are common to the set.
Periodicities predicted by this method have been related to
both structural factors [19] and protein function [20]. In these
applications of Fourier transforms across sets of proteins,
particularly large peaks in the combined signal were taken
as indicative of common periodicities, however, there was no
attempt to quantify the certainty with which this periodicity can
be inferred. Here, Monte Carlo envelopes are used to give, for
the first time, indications of the statistical significance of
these methods. In an initial test, Fourier transform methods are
applied to random protein sequences to study previously
reported significance levels. The same methods are then used
to study hydrophobicity, and the factors believed to govern the
speed of codon translation, in sets of G-protein coupled receptor
(GPCR) sequences.

The results highlight potential pitfalls of the method, and
suggest that previous predictions of periodicity may have been
over-interpreted, though they also illustrate cases in which the
method can be very useful, for example in uncovering genuine
low frequency periodicities. To illustrate the power of the
method, we have applied the method to the GCR2 family.

GCR2 [21] and the homologous Lanthionine synthetase C-like
proteins [22–25], have been reported to be GPCRs [21,26,27],
primarily because they have been identified by transmembrane
helix prediction algorithms as having 7 transmembrane helices,
but in the case of the LANCL1 protein, motifs such as putative
glycosylation sites were also identified [26,27]. There is currently
much interest in GCR2 because it has been proposed as the
receptor for abscisic acid [21], an important plant hormone.
However, the LANCL1 protein was later re-classified by the
original authors as a peripheral membrane protein with enzyme
activity [24], an observation now justified by the recent X-ray
crystal structure of a lantibiotic cyclase (PDB codes 2g02, 2g0d).
Recently the status of GCR2 as a GPCR has also been queried
[28] and in an attempt to understand the origin of this confusion,
we have analysed the GCR2- Lanthionine synthetase C-like
protein family using Fourier transform analysis, using hydro-
phobicity as the transformed property.
2. Methods

2.1. Discrete Fourier transform

From any one-dimensional sequence of amino acids of
length l, a numerical sequence f(k) can be derived, by assigning
numerical values, for example hydrophobicity scores, to the
amino acids in the sequence. Given such a numerical sequence,
the discrete Fourier transform is the sequence F(n), where k
is the position along the numerical sequence and n is the
frequency, given by

F nð Þ ¼
Xl

k¼1

f kð Þe2pikn=l ð1Þ

F(n) is usually complex, and can be separated into a real
cosine series, and an imaginary sine series, as follows:

F nð Þ ¼ C nð Þ þ iS nð Þ ¼
Xl

k¼1

f kð Þcos 2pkn=lð Þ

þ i
Xl

k¼1

f kð Þsin 2pkn=lð Þ: ð2Þ

2.2. Signal-to-noise ratio, S/N

Given a numerical sequence f(w) with m elements, the
signal-to-noise ratio is the maximum absolute value of an
element of the sequence divided by the mean absolute value of
the sequence

S=N ¼ maxw jf wð Þjf g=
Xm
w¼1

jf wð Þj
m

: ð3Þ

The signal-to-noise ratio has a minimal value of 1, in the case
of all elements of f(w) having the same absolute value, and a
maximal value of m, in the case of all but one elements of f(w)
having an absolute value of zero.

2.3. Random sequence generation

A number of different sets of sequences were used in the
study. In order to study the significance values quoted by de
Trad et al. [20], and Cosic, a large number of random sequences
were generated. A set of 100000 proteins was randomly se-
lected from the UniRef50 database [29], which consists of
protein sequences clustered such that no two sequences in the
database have more than 50% sequence identity. A random
residue was chosen in a random sequence, and the protein
sequence was read off from that point. If the end of the sequence
was reached, a jumpwasmade to another random sequence from
the 100000, starting at the residue int(p2L), where L was the
length of the new sequence, and p was a uniform random
variable on the interval [0,1]. Here the p2 term biases the choice
of residue towards the start of the protein, in order to minimize
the number of jumps between sequences. Generating random
sequences from real protein data, rather than on a residue by
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residue basis, incorporates into the random sequences more
of the autocorrelations found in real protein sequences than
would the generation of sequences on a residue-by-residue
basis. Thus, results from specific protein sequences can be
compared to a backdrop of what would be expected from a
protein sequence that was chosen by chance. Residues from
these random sequences were converted into their EIIP (Electron
Ion Interaction Potential) values [30], nominally ranging from
0 to 0.1263. The EIIP value, sometimes referred to as the
PEII value [31], is based on a pseudopotential method [32],
and was claimed to correlate with properties of organic mole-
cules such as carcinogenicity, toxicity, and antibiotic activity
[33–36]. Though this claim was the subject of some controversy
[37,38], the method is used here for consistency with the
previous key studies in this area. The experiment was also
carried out using random sequences generated on a residue-by-
residue basis, which by definition have no inherent autocorrela-
tion. Results from these latter tests are contained in supporting
information.

2.4. GPCR sequence generation

A second set of sequences was used to study potential
periodicity in codon and codon pair data and in hydrophobicity.
The alignment of olfactory proteins from the GPCR database
[39] was edited to extract a set of human olfactory proteins
with no gaps or insertions, each of 314 residues in length, and
these were filtered using the program Jalview [40] to remove
redundancy, so that no two sequences had more than 50%
sequence similarity. DNA sequences for each of the resulting
12 proteins were taken from the EMBL nucleotide database
[41] and converted into χ2 values describing the frequency of
the DNA codons, using information from the codon usage
database (http://www.kazusa.or.jp/codon/), and the extent of
over-representation of codon pairs, derived from the work of
Gutman [42], to give two numerical sequences describing each
protein. χ2 values for codons that occur less frequently than
average, and for codon pairs that were over-represented, were
arbitrarily given a positive sign. Other work, not reported here,
has suggested that codons and codon pairs which are translated
slowly may have a role in protein folding. Rare codons, and
over-represented codon pairs [43] that are reportedly translated
slowly [44] and which have positive χ2 values were the
focus of this project, so χ2-values which were below zero
were set to equal zero, representing the assumption that the
speed of translation is unimportant when the translation
happens quickly. Further sets of sequences were used to
study periodicity in the hydrophobicity of residues. Twenty six
proteins were randomly selected from the multiple sequence
alignment of archaeal bacteriorhodopsins in the GPCR database
[45], and another thirty proteins randomly selected from the
multiple sequence alignment of all rhodopsin vertebrate
sequences in the same database. These were converted into
numerical hydrophobicity values according to a measure of the
hydrophobicity of each residue [46]. Forty six proteins from a
GCR2 alignment were also studied with this hydrophobicity
method (see below).
2.5. RRM method

In order to analyze each of the numerical sequences, the
RRM method described by Cosic [31] was applied to the
sequences f(k). In-house code was used to generate the real and
imaginary parts of a Fourier transform (see Eq. 2), which in turn
were used to generate the real sequence R(n)

R nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C nð Þ2þS nð Þ2

q
ð4Þ

Given a protein length of L, the sequence R(n) takes values
for 0≤n≤L/2, as any pattern found in the protein could not
have a wavelength shorter than 2 residues. Where R(n)i is the
sequence corresponding to protein j, repeating this process for
all of the proteins in the set and multiplying together generated
the cross-spectral function

P nð Þ ¼ j
M

j¼1
R nð Þj ð5Þ

where the product is taken over all of the M transformed
sequences from the protein set. This multiplication identifies
frequencies n which have high values of R(n) for most values of
j — if for a few values of j, R(n) is small, the product will also
be small. Hence the multiplication step identifies common
frequencies in the data [31]. As a measure of the significance
of the resultant signal, the signal-to-noise ratio, S/N, was
calculated for P(n) using Equation 3.3. Where the RRMmethod
was applied to codon and codon pair data, and to residue
hydrophobicity scores, in-house code was used to calculate the
discrete Fourier transforms, rather than the Fast Fourier Trans-
form (FFT) method used by Cosic [31]. This allows for easier
interpretation of frequency results.

2.6. Significance tests

In order to provide an estimate of significance levels for the
EIIP method, sets of between 1 and 30 random sequences were
generated, with lengths varying from 100 to 400 residues. For
each length and set size, 10000 sets of proteins were randomly
generated. Calculating the S/N ratio for each of these sets, and
ordering them, gave statistically derived estimates for sig-
nificance at the 50%, 95%, and 99% levels.

In order to test the significance of the result from the olfactory
protein DNA data, the RRM method was applied to 10000 sets
of 12 random DNA sequences. Random sequences were
generated from DNA taken from proteins in the human genome,
from the EMBL nucleotide human coding sequence database,
[41] edited to remove duplicate sequences, partial sequences,
and sequences with bases other than G, C, A, or T. These
sequences were filtered to remove any sequences less than 315
amino acids in length, to give a set of 57825 proteins. The χ2

information for the codons and for the codon pairs were derived
as above. To generate a random sequence, a random protein was
chosen from the set, and the χ2 scores for the codons and for the
codon pairs were read along the DNA sequence, starting from
the first codon of the sequence.

http://www.kazusa.or.jp/codon/


Table 1
Significance levels for signal-to-noise ratios calculated from EIIP data, derived
from trials of random protein sequences

Sequence length (residues)

100 200 300 400

Mean value
10 sequences 11.6 16.6 20.1 23.5
20 sequences 19.1 30.4 40.9 49.8
30 sequences 24.3 41.3 56.2 72.5

95% significance
10 sequences 25.7 38.8 47.2 57.3
20 sequences 40.0 71.0 99.4 128.5
30 sequences 45.5 85.7 124.8 165.3

99% significance
10 sequences 33.6 55.6 71.0 88.7
20 sequences 46.0 87.2 123.8 167.7
30 sequences 48.8 95.9 140.7 190.1

The table gives the signal-to-noise ratio that would be required for a sequence to
have statistically validated genuine periodicity according to the RRM method.
The signal of peak amplitude may occur at any frequency. Note that these values
only apply where the protein sequences are transformed into numerical
sequences according to their EIIP value. These numbers may differ if values
other than EIIP are used.

Fig. 1. Location of helices (marked as black blocks along the sequence) in
bacteriorhodopsins and vertebrate rhodopsins, (sequences from the GPCRDB).
The bacteriorhodopsins (top) have 7 essentially equally-spaced hydrophobic
helices, leading to a significant spike related to hydrophobicity score at a
frequency of 7 in the cross-spectral function. In the rhodopsin sequences
(below), extended non-hydrophobic regions, e.g. between helices 4 and 5 lead to
a peak in the cross-spectral function at a frequency of 8.
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In a similar manner, 10000 sets of random sequences equal in
number and length to the sequences in the hydrophobicity test sets
were generated and converted into hydrophobicity scores, to give
a statistical indication of the significance of the results obtained.

2.7. GCR2 transmembrane helix prediction and sequence
alignment

The transmembrane regions of GCR2 and related GPCRs
were predicted using TMHMM [47,48] and the Kyte–Doolittle
method [49]. The results indicating that GCR2 is not a GPCR
are shown in supporting information. The alignment of GCR2
with the lantibiotic cyclase (PDB codes 2g02) [50] and the
PFAM [54] seeded alignment of the Lanthionine synthetase
C-like proteins (pfam code LANC_like/PF05147) was generated
using a profile alignment with clustalX [51,52]. This homology of
GCR2 to the Lanthionine synthetase C-like proteins has been
reported elsewhere [25]. We note that all of the key Lanthionine
synthetase C-like GXXG motifs [24] are aligned in both GCR2
and 2g02, along with the catalytic residues of the lantibiotic
cyclase (PDB code 2g02)[22]. Hydrophobicity values were
assigned to each position, as above [46]. The Fugue [53],
genTHREADER [54] and Phyre [55] fold recognition servers all
identified lantibiotic cyclase as a high scoring hit for GCR2
(see supporting information).

3. Results

Results of the measurement of S/N values in the random
EIIP sequences are shown in Table 1. The level of significance
is dependent on both the number of sequences in a set, and on
the length of those sequences. The figures obtained contrast
with the S/N value of 20 which, following the work of
Veljkovic et al. [56] has widely been assumed as being
significant [20,31,57–59] — for sets of 30 proteins, this value
would in fact be below average. In order to demonstrate
statistical significance at the 95% level, much higher values
would often be needed. Thus to infer periodicity in the EIIP
values with a 95% certainty for a set of 20 proteins of length
300 amino acids, a single to noise ratio in excess of 98.2 is
required.

Applied to the codon data, the RRM method found a spike in
the cross-spectral function with a signal-to-noise ratio of 22.7, at
a (very high) frequency of 116 (i.e. there are 116 repeating units
in the 314 residues, corresponding to a wavelength of about 2.7
residues). Applied to the codon pair data, the RRM method
found a spike with signal-to-noise ratio of 27.3, again at a (very
high) frequency of 136. (These two frequencies are 0.3694 and
0.4331 in Cosic's measure.) In both cases, the signal-to-noise
ratio was above the value of 20, identified by Cosic as being the
threshold for significance. However, application of the RRM
method to random DNA sequences suggested another picture
with regards to significance. For the codon and codon pair data,
the median signal-to-noise ratios from 10000 sets of random
DNA sequences were 24.8 and 23.8 respectively. Within the set
of results from random protein sequences, the 5% and 1% high
values were, respectively, 59.7 and 85.9 for the codon data, and
57.3 and 82.0 for the codon pair data. Thus, the signal-to-noise
values obtained for the olfactory protein DNA data do not
appear to be significant, and it is likely that the spikes obtained
are the product of chance, rather than any interpretable pattern
in the sequence data. Applying the RRM method to the set of
bacteriorhodopsin sequences gave a spike in the cross-spectral
function with S/N ratio of 114 at a frequency of 7. Applying the
same method to the 10000 sets of random proteins of the same
length gave a 99% significance level of 107, indicating that the
observed peak is significant. The frequency of 7 corresponds
to the 7 hydrophobic alpha helices in the bacteriorhodopsin
structures, thus demonstrating a clear link between the Fourier
transform results and structure. Application of the same method
to a set of vertebrate rhodopsins also gave a significant S/N
ratio, but at a peak frequency of 8. The presence of a significant
S/N ratio suggests that in this case, the frequency might cor-
respond to a genuine hydrophobicity-related property of the
sequence, although it is known that the sequence has only seven
distinct hydrophobic regions, corresponding to the transmem-
brane helices. A possible explanation of this result is the
common existence of irregular length loops and of additional
amino acids at the start and end of the sequence, illustrated
schematically in Fig. 1. These additional amino acids have the



Fig. 2. (A) The structure of 2G02, with the 7 hydrophobic regions mapped onto
the 7 inner helices in shown black (or various shades of green online), that
contain the 7 GXXG motifs (cyan online); the key residues of the active site are
displayed in space-filling mode. (B) The structure of GCR2, with the 7
hydrophobic regions mapped onto the 7 inner helices shown in black (or various
shades of green online) that contain the 7 GXXG motifs (cyan online); the key
residues of the active site are displayed in space-filling mode. Residues 255–260
are omitted. (C) The structure of 2G02, shown in space-filling mode, indicating
that the 7 hydrophobic regions, shown in black (or various shades of green
online), map onto a single surface. The 7 GXXGmotifs are shown in cyan in the
online version and the key residues of the active site are displayed in space-
filling mode.
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effect of increasing the frequency that is observed, as the Fourier
transform method effectively fills in another peak to fit the
periodicity to the hydrophobic regions that do exist. We suggest
that in this case, non-periodic insertions to the periodic sequence
have distorted the frequency at which periodicity is found.

When applied to the GCR2 sequences, the RRM method
identified a periodicity at a frequency of seven, with a S/N value
of exactly 270 (to 7 significant figures). Given a sequence
length of 539, this is equal, within machine accuracy, to the
maximum theoretically obtainable value for this alignment
(hence there is no need to compare to random sequences). The
seven fold hydrophobicity could be interpreted as giving strong
support to the idea that GCR2 is a GPCR. However, a blast
search [60] of the G-protein coupled receptor sequence database
(GPCRDB) did not yield any significant hits; a search of the
NCBI non-redundant database yielded hits from the Lanthio-
nine synthetase C-like protein family and a putative class B
GPCR (XP_318705.3; EAA13819.3; E value 1E-45) that was
probably also wrongly characterized as it also aligned well to
the Lanthionine synthetase C-like protein family (results not
shown). Likewise, the TMHMM and Kyte-Doolittle transmem-
brane helix prediction algorithms did not given any clear
indication that GCR2 is a GPCR. TMPro did identify 5 of the 7
transmembrane hydrophobic regions, but TMPro only high-
lights transmembrane regions, it does not determine whether
these are sufficiently long to span the membrane. The results of
the transmembrane prediction algorithms are given as support-
ing information and are similar to those given elsewhere [28].
Given the negative results from the BLAST search and the
transmembrane prediction algorithms, it is difficult to see why
GCR2 has been proposed as a GPCR, particularly given its
alignment to the Lanthionine synthetase C-like protein family.
However, the origin of the confusion is apparent from the
application of the RRM method to the GCR2 multiple sequence
alignment. The signal to noise ratio of 270 (maximum
possible=270) compares very favourably with the signal to
noise ratio of 114 (maximum possible=115) for the bacter-
iorhodopsin family. Visual inspection of the GCR2 multiple
sequence alignment using the hydrophobic display in Jalview
Fig. 3. Mean signal-to-noise ratios calculated from 100000 sets of 100 products
of t U [0,1] random variables.
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[40] shows 7 hydrophobic stretches which generally commence
near the C-terminal end of each of the seven inner helices, they
encompass the 7 GXXG motifs and end near the N-terminal
region of he helix. The length of these stretches is somewhat
subjective as they differs slightly for each Lanthionine
synthetase C-like sequence and contains hydrophilic residues
(such as His in the zinc binding site), but a conservative estimate
is 15±2 and so they are generally too short to span the
membrane. These regions are plotted onto the structure the
lantibiotic cyclase (PDB codes 2g02) (Fig. 2A) and a homology
model of GCR2 created using Phyre [55] (Fig. 2B). The
corresponding space-filling model of 2G02 show that the
exposed regions of these hydrophobic stretches map onto a
single face of the protein near to the active site (Fig. 2C).

4. Discussion

In the application of Fourier transform methods to the
detection of underlying periodicities in protein sequences, some
apparently useful results have been obtained [19,20]. However,
care needs to be taken to ensure that such results are a product of
the sequence data, rather than simply being an artefact of the
mathematics. Here we have shown that empirically-derived
statistical tables can be drawn up to serve as a measure of the
significance of any one given result.

The significance values for the signal-to-noise ratio derived
from random sequences were much higher than might be
expected. In some cases a signal-to-noise ratio of 100 (that is, a
signal of 100 times greater than average magnitude) would not
be significant. This can best be understood by considering what
happens when large quantities of numbers are multiplied
together, as occurs when the Fourier transforms are multiplied
together in Equation 3.5. Where numbers between 0 and 1 are
multiplied together many times, those numbers that are close to
1 remain of roughly the same magnitude, while numbers closer
to zero become very small very quickly. In the case of Equation
3.5, this leads to a very high variance in the numbers produced,
such that the maximal value of the sequence P(n) is much larger
than the mean value, simply as an artifact of the method.
Regardless of the sequence data that is fed in, very large S/N
values are produced as a matter of course, and great care needs
to be taken in assuming significance. This is illustrated by
Fig. 3, which shows mean signal-to-noise ratios for sets of 100
products of uniform random variables. This gives the equivalent
of the expected signal-to-noise ratio found in the cross-spectral
function (Equation 3.5) if the sequences R(n) (Equation 3.4)
were 100 units long, and were distributed as uniform random
variables on the interval [0,1]. From entirely random numbers,
the mean signal-to-noise ratio rises above 20 for products taken
across just nine sequences.

This caution about presuming levels of significance does not
invalidate the method itself. Where proper care is taken to
establish significance, results can be found that relate to genuine
periodicities in the properties of protein sequences, as in the
case of the bacteriorhodopsin set, where the seven-fold pattern
in hydrophobicity reflects the seven-transmembrane helical
structure of the protein. In this case also, however, care must be
taken in the interpretation of results. As was demonstrated in the
case of the rhodopsin sequences, factors such as insertions or
deletions in the protein sequence can distort the periodicity that
is found. Alignments of sequences are resistant to mutation, as
long as insertions or deletions are not made in an uneven way
throughout the sequence.

In another set of experiments (results not shown), a 90% rate
of random residue mutation was applied to an alignment of
identical, artificially constructed perfectly periodic sequences
of length 300 residues (see supporting information), but the
periodicity was still detectable with the RRM method, even
though only 10% of the original residues remained. Similarly,
random insertions made at random points in the sequence
lowered the frequency at which periodicity was found, but
periodicity was still recoverable at high rates of mutation of up
to 83% (here residues were removed from the end of the
sequence to maintain the fixed length of 300 residues). When
deletions were made from the sequence, and random residues
added at the end of the sequence (again to maintain the length
of 300 residues), the frequency at which periodicity was found
increased, and no significant periodicity was found at a level
greater than 60% mutation. Similar experiments have shown
that when insertions and deletions are made in a non-regular
manner then periodicity is readily destroyed. These experiments
contribute towards the observation that Fourier transform
methods can detect low frequency periodicity more readily
than high frequency periodicity. The experiments also support
the hypothesis that insertions between the helices of rhodopsin
sequences can cause a distortion of the frequency at which
periodicity is found, in that addition and deletion of non-
periodic residues has been shown to change the frequency of
periodicity. Where insertions are made between hydrophobic
regions in a sequence, and the length of the sequence is not kept
constant, the effect would be to increase the number of
wavelengths that could be fitted into the sequence as a whole.

We note that periodicity as discussed here is a different
concept to auto-correlation. Periodicity as discussed here
implies a regular repeating pattern of residues, or of properties
of residues, extending throughout the length of an entire
sequence. This is a sufficient, but not necessary condition for
autocorrelation, which simply measures the propensity for
residues separated by a fixed-length gap to have similar
properties. An example of this from mathematics would be
the binary sequence {ai} which equals one if i is a prime
number or if (i-23) is a prime number, but which equals
zero otherwise. Such a sequence would have a strong autocor-
relation at a distance of 23, but absolutely no periodicity.
Elsewhere we will report autocorrelation in the codon and
codon-pair χ2 data even though it clearly has no statistically
verifiable periodicity.

In an alternative approach to determining significance,
Rackovsky [19], carrying out a Fourier-based method, com-
pares results for protein sequences against a set of results for
permutations of sequences. This gives a more accurate measure
of significance than choosing a fixed value for all lengths of
sequences, however, as we show elsewhere, permutations of
sequences can be statistically different in nature to real protein
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sequences. Because of the use of multiplication to compare
results, small differences between real protein sequences and
their permutations can be magnified, and this has the potential
to generate misleading results. In this case too, care must be
taken to establish accuracy.

An illustration of a protein where statistically meaningful
periodicity was identified is GCR2. Here the Fourier trans-
form results reveal the origin of the confusion as to whether
GCR2 and its lanthionine synthetase C-like homologues
belong to the GPCR family. GCR2 does indeed have 7 fold
hydrophobic periodicity that resides in the inner helical
regions of the α-barrel and this was identified more strongly
by the RRM method than the corresponding property in other
well- characterized 7TM proteins such as bacteriorhodopsin
and rhodopsin. These genuine hydrophobic stretches are too
short to give a significant signal in most TM prediction
algorithms but their presence is sufficient to yield a weak signal
in some algorithms. However, the homology of GCR2 to
lantibiotic cyclase [22] for which there is a crystal structure
should be sufficient evidence to close the debate on the
molecular nature of GCR2. Indeed, it is worth noting that
Moriyama et al. used hidden Markov and related methods to
identify novel plant GPCRs but they did not detect GCR2 [61].
Nevertheless, while some aspects of the original report that
GCR2 is the GPCR receptor for abscisic acid [21] have been
seriously questioned [28], there remains the option that GCR2
may retain an indirect role in signaling in plants since not all of
the experiments have been disproved in all plant tissues.

Appendix A. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at doi:10.1016/j.bpc.2007.11.004.
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